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Stokes flow past a sphere coated with a thin fluid film 
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The present study examines the steady, axisymmetric Stokes flow past a sphere coated 
with a thin, immiscible fluid layer. Inertial effects are neglected for both the outer 
fluid and the fluid film, and surface tension forces are assumed large compared with the 
viscous forces which deform the fluid film. Furthermore, the present analysis assumes 
t,hat the mechanism driving the fluid circulation within the film is not too large. From 
force equilibrium on the film we find that a steady fluid film can only partially cover 
the sphere, i.e. the film must be held to the sphere by surface tension forces a t  the 
contact line. The extent of the sphere covered by the film is specified, in terms of the 
solid-fluid contact angle, by the condition of global force equilibrium on the fluid film. 

Using a perturbation scheme based on the thinness of the fluid layer the solution to 
the flow field is obtained analytically, except for the fluid-film profile (i.e. the fluid- 
fluid interface) which requires numerical calculations. One of the principal results is an 
expression for the drag force on the fluid-coated particle. I n  particular, we find that 
the drag on a sphere is reduced by the presence of a fluid coating when the ratio of the 
film fluid viscosity to the surrounding fluid viscosity is less than t .  Detailed numerical 
computations are conducted for a few typical cases. The calculations show that a film 
of prescribed areal extent, i.e. specified contact angle, is only possible when the 
magnitude of the driving force on the film is below some maximum value. A simple 
experiment was also performed, and photographs, which qualitatively illustrate the 
fundamental fluid-film configurations predicted by the theory, are presented. 

1. Introduction 
The flow due to a spherical body moving in a viscous, incompressible fluid a t  small 

Reynolds number has been a problem of both practical and theoretical importance. 
The translation of a rigid sphere was first considered by Stokes (1851)) motivated by 
his interest in the effects of fluid friction on the motion of pendulums. A considerable 
time later Hadamard (191 1) examined the translational motion of a spherical drop of 
immiscible fluid in order to determine the effect of internal fluid circulation on the drag 
force. Basset (1888) first considered the translation of a solid sphere when the fluid is 
allowed to  slip a t  the sphere’s surface. Basset assumed that the tangential component 
of the fluid velocity at the solid surface was proportional to  the local tangential shear 
stress. Countless other works have considered the motion of rigid and fluid spheres in 
a variety of primary flows and bounded domains. Here we will consider a variation of 
the classical unbounded problem by examining t,he incompressible low-Reynolds- 
number flow past a solid sphere having a thin layer of immiscible fluid covering its 
surface, i.e. a fluid film. 
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In  the present analysis the Reynolds number based on the free-stream velocity U,, 
the outer fluid's viscosity p' and density p ' ,  and the particle radius R, will be assumed 
small, with the corresponding inertial effects neglected. The mechanism driving the 
fluid-film circulation will be assumed sufficiently weak so that the fluid velocity in the 
film is small compared with the free-stream velocity (the condition which must be 
satisfied for this to be true will be discussed short'ly). Furthermore, an appropriate 
Reynolds number for the fluid film will be assumed small enough so that the inertial 
effects may be neglected. Attention is restricted to  axisymmetric flows in which the 
characteristic film thickness h, is small compared with the radius R, of the solid sphere. 
The fluid-fluid interface will have a radius specified by 3 = R,( 1 + E  f (0) ) '  where the 
film thinness parameter E = h,/R, 4 1, 8 is the angle between a field point and the 
symmetry axis, and f (19) is an unknown function to be determined as part of the 
solution. Since the fluid-fluid interface differs only slightly from a sphere, we require 
the surface tension forces to be large compared with the viscous forces which tend to 
deform the fluid film. In  particular, we take p = pUo/oI < 1 andp'  = p'Uo/a 4 1, where 
a is the constant surface tension and p the viscosity of the film fluid. I n  addition, the 
effect of intermolecular forces on the fluid film will be neglected. 

A straightforward perturbation expansion of the flow field in terms of the thinness 
parameter e will be used to construct the solution. We will see that this procedure 
essentially involves determining an order E correction to the uniform flow past a solid 
sphere, due to the presence of the thin fluid film. 

Before beginning the analysis a few qualitative features of the problem can be 
anticipated by considering the dimensional characteristics of the flow field. Firstly, 
the magnitude ofthe stresses in the outer flow field will be of orderp'U,/R, whereas the 
shear stress within the fluid film will be of order pu/ho, where u represents the magni- 
tude of the velocity in the film. Since the shear stress must be continuous a t  the fluid- 
fluid interface, we must have u = O(ep'U,/p). Consequently, u will be small provided 
the viscosity of the outer fluid, p', is not too large, i.e. the driving force is sufficiently 
weak. Furthermore, within the fluid film there will be a constant pressure of magnitude 
2a/R,, since the fluid-fluid interface is spherical to  first order and, due to the thinness 
of the fluid layer, the pressure generated within the fluid film by the outer flow will be 
large and of the order pR,u/hi = ,u'U,/sR,. Note that the large pressure generated in 
the film occurs for the same reason as does the large pressure in classical lubrication 
theory. From the magnitude of the stresses present we can obtain information concern- 
ing the fluid-film configurations which may occur. Ifwe consider global force equilibrium 
for afluid film which we assume completely covers the solid sphere (f (0)  > 0,O < 0 < r, 
i.e. there are no contact lines where the film vanishes), we find that such a steady fluid- 
film configuration is not possible. This is because the relatively large pressure of 
O(p'U,/sR,) within the film results in a net force on the fluid film which cannot be 
balanced by the other, relatively smaller, stresses present. Note that the constant 
pressure term of O(a/R,) is also large since p 6 1, but contributes no net force on the 
film when it covers the entire sphere. Consequently, in order to have a steady flow 
situation it is necessary for the fluid film to only partially cover the solid sphere, so that 
force equilibrium can be established through the surface tension force a t  the contact 
line, i.e. the fluid film must be held to the sphere by the surface tension force a t  the 
contact line. From this we can anticipate the following basic axisymmetric fluid film 
configurations: ( 1 )  a fluid film which has two contact lines a t  19 = 0, and with no 
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FIUURE I .  Fluid-film geometry. The left-hand side depicts a film with two contact lines and the 
right-hand side depicts a film with a single contact line. Oo and 8, are the positions of the fluid- 
film contact lines, and O* denotes the location of the maximum film thickness. 

fluid film present over a portion of the front and rear of the sphere, i.e. a belt of fluid 
around the sphere, and (2) a fluid film which has a single contact line a t  either 0 = 8, or 
8, and therefore covers either the rear or front of the sphere (see figure 1) .  

The study begins in 5 2 with a presentation of the governing equations and boundary 
conditions, followed by a formulation of the problem using expansions of the flow 
field in terms of the thinness parameter 8.  In  § 3 the solution is constructed and the 
correction to the drag force, due to the presence of the fluid film, is determined. A few 
illustrative examples are considered in 5 4 along with the results of a simple experiment. 

2. Governing equations and boundary conditions 
Since the Reynolds number Re = p'U, R,/,u' has been assumed small, the outer fluid 

velocity U and pressure P satisfy the Stokes equations. I n  non-dimensional form 
we have 

where the dimensionless velocity, pressure and spatial co-ordinates are based on 
U,, )'Uo/Ro, and R, respectively (in the sequel dimensionless quantities will be used 
unless otherwise stated). 

In  the fluid film the velocity u and pressure p also satisfy the Stokes equations 

v2u = V P ,  v.u = 0, (1) 

v2u = vp, v .u  = 0, (2) 

where the dimensionless pressure is based on ,L~U,/R,, and the dimensionless velocity 
and spatial co-ordinates are based on U, and R, as before. The specific Reynolds 
number which must be small to justify the neglect of the inertial terms will be made 
clear after the solution is obtained. 

In  formulating the problem we take the symmetry axis to be the x axis and introduce 
the spherical polar co-ordinates (R, 8, $), where 0 is the angle between a field point and 
the symmetry axis. The components of the velocity field in spherical co-ordinates for 
the outer fluid and the fluid film are respectively ( U ,  V ,  0 )  and (u, v, 0) .  

The boundary conditions for the outer fluid far from the sphere are 

U-fe ,  and P+O as R-too, (3) 
8 F L M  I10 
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where e, is the unit vector in the x direction. On the solid sphere R = 1 the velocity 
either in the fluid film or the outer fluid, whichever one is in contact with the sphere, 
must satisfy the no-slip condition. At the fluid-fluid interface (S,) we must have: 
(1) continuity of the tangential component of velocity, (2) no fluid flux across the 
interface, (3) continuity of the tangential stress, and (4) the discontinuity in the normal 
stress must be equal to the product of the surface tension a and the sum ofthe principal 
curvatures of the surface K .  Accordingly, on R = 1 + 8 f (0) we require 

u. t  = U . t ,  u .n  = U . n  = 0, (4)> ( 5 )  

where t and n are respectively the unit tangent and normal vectors to S,, T,, and T,, 
are respectively the outer fluid’s dimensionless stresses (based on ,u’Uo/Ro) in the 
directions tangent and normal to S,, r,, and r,, are similarly the fluid film’s dimension- 
less stresses (based on pUo/Ro), and as defined earlier ,8 = pU0/a.  

Although a t  this point the problem appears difficult from an analytical viewpoint, 
the fact that the fluid film is thin enables considerable simplification. Firstly, for a 
thin fluid film we anticipate that there is a leading-order outer flow driving fluid 
circulation within the film, which in turn leads to modifications of the outer flow. 
Consequently we assume 

u = U@)+€U(l)+ ...) v = V(O)+€V(l)+ ..., P = P(O)+SP(l)+ ...) (8) 

with the governing equations for each order clearly being the Stokes equations. 
Secondly, since the surface tension forces are assumed large compared to the deforming 
effect of the stresses on the fluid-fluid interface it follows that the slope of the interface 
will be small. Note, however, that there will be a small region of non-uniformity 
near the contact line where the depth ofthe fluid film vanishes and the slope must equal 
tan a, where @ is the contact angle. A consequence of the small slope of the interface 
is the fact that in the major portion of the film (excluding a small neighbourhood of 
the contact line) the velocity in the film perpendicular to the solid surface, i.e. the 
radial component, will be small compared with the tangential component. In addition, 
since the fluid-film velocity is assumed small compared with the free-stream velocity “0, 
we take 

v = €V(1) + €2V(2) + . . . ) (9) 

u = €2U(1) + €3U(23 + . . . . (10) 

Furthermore, due to the thinness of the film the radial velocity gradients will be large 
compared to the tangential ones. Therefore, in order for the pressure gradient to 
balance the viscous stress term in the equation of motion we take 

2 1  
P = -+--p(1’+p‘2’+ ...) 

P E  

where, as already mentioned, the first term in (11))  2/p, is the constant pressure 
necessary so that the fluid-fluid interface is spherical to leading order (note equation 
(7)) where, to the leading order, K -N 2). 
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Introducing the thin film variable $ = (R - l)/c, the equations (2) governing the 
fluid motion within the film become, to leading order, 

For use in expressing the boundary conditions a t  the fluid-fluid interface R = 1 + B f (0)  
we have the unit normal and tangent vectors to 8, given by 

(15) 

(16) 

where (eK,  ee, eg)  are the the unit vectors in spherical polar co-ordinates. Furthermore, 
since K = V .  n we have 

af n N eR - €2 ee + O(e2), 

af t N e,+B-eeR+O(€2), ae 

Therefore, introducing the components of stress in spherical co-ordinates, namely 
7 X R )  7Re,  TRR and TRe, the boundary conditions on R = 1 +ef (0)  become 

w -  V+€-(U--U)fO(€2)N af 0, u - E - w + 0 ( € 2 ) 2 .  af 0) 

U - e - V + O ( e 2 )  a! N 0, TR~--TR~+O(E)  P' N 0, 

ae ae 

ae P 

These can be further approximated using a Taylor series expansion of the outer 
fluid's velocity and stresses about R = 1 ,  giving 

w-V+€ - ( u - U ) - f -  2 0 ,  

a !  
U-€-W!? 0, ae 

U + €  f----V 2 : O )  

[ ;; aR 

[ ;: ;; 1 

where it is understood that the variables associated with the outer flow field are 
evaluated a t  R = 1, whereas the fluid-film flow field is evaluated a t  < = f (8) .  

8-2 



222 R. E .  Johnson 

Substituting the expansions of the velocity fields (8), (9) and (10) into (18), (19) and 
(20) gives 

For use in the stress conditions (21) and (22) we evaluate the stress components giving 

(29) 
a u(0) 

TRx = -Pco)+2-+0(~)  = T$"+O(E). 
aR 

Consequently, using (17) ,  (26), (27), (28) and (29), the boundary conditions (21) and (22) 
on the stresses become 

The restriction that ,8 and p' are small becomes specific at this point, namely, in order 
that the left-hand and right-hand sides of (31) are of O(E) with the error of higher order, 
we require ,8 = O(e2) and p' c O(E) .  

The formulation of the problem is now complete with the governing equations and 
boundary conditions leading to the following hierarchy of problems. 

The leading-order outer flow problem is 

V2U") = VPCO), v .  U(0) = 0 (32) 

U(0) = V(0) = 0 on R = 1, (33) 

U(O)-t e, and P O ) - +  0 as R-+ 00. (34) 

with the boundary conditions 

The leading-order fluid-film problem is 
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with the boundary conditions 

V(l) = UCl) = 0 on 5 = 0, 

where the film profilef(0) is determined from (31), i.e. 
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with appropriate boundary conditions on f (0) to  be discussed in the following section. 
The problem determining the first correction to the outer flow is 

VqJ(1) = vpu, v.  U(1) = 0, (42) 

with the following boundary conditions: for that portion of the sphere not covered by 
the film we have the no-slip condition, 

U(1)= V(1)= 0 on R = 1, 0 < 0 < O0 and el < 0 G 7 ~ ,  (43) 

for that portion of the sphere covered by the film, 

where we have made use of the leading-order boundary conditions U(0) = V(0) = 0 on 
R = 1 and in (44) dl) is evaluated on E = f(e),  and lastly, far from the sphere, 

U(l),  P(l) --f 0 as R -+ co. (45) 

3. Solution 
3.1. The leading-order outer flow solution 

From (32)) (33) and (34) we see that the leading-order outer flow field corresponds to 
the uniform flow past a solid sphere. Using the singularity method for Stokes flow 
(Chwang & Wu 1975) the well-known solution of this problem is given by the sum of 
a uniform flow, a stokeslet, and a potential doublet, i.e. 

where R = 1x1, x being a position vector to a field point having Cartesian co-ordinates 
(x, y, 2 )  * 
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3.2. The leading-order thin Jilm solution 

From (36 )  we see that the pressure p(l) is a function only of 8, and therefore (35), (38) 
and (39) give 

where we define 
v(" = iG(8) ((6 - 2.f) + K(8)  5, (48) 

a p  
G(8) = -, 

a8 (49) 

From the continuity equation (37), the no-slip condition (38), and the expression for 
v(l) we obtain 

~ ( 1 )  = +(2(G--- af aK - Kcot 8-  ( Q E -  f )  (;+ Gcot 8)). 
a8 a8 

Furthermore, if we integrate the continuity equation (37) across the film thickness 
from < = 0 to f (8) and use the remaining boundary condition (40), we obtain the 
condition 

/lv")(LJd[ = 0. (52) 

This is the obvious physical constraint that for steady flow the net volume flux 
through a section of the fluid film must be identically zero. Satisfying this condition 
gives 

After using (50), (28) and (46), (53) becomes 

Integrating from a reference point 8" to 8, we obtain the pressure within the fluid film 

where p* = p(1)(8*), Note that p* is an undetermined constant which will be found as 
a part of the solution. 

We can now readily deduce the specific condition which must be satisfied if the 
inertial terms in the governing equation for the fluid film are to be neglected. The 
magnitude of the viscous and inertial effects are proportional to ( ,uUo/R~) c2 a2v/at2 
and (pU,2/R0) UB-1 av/a( respectively. Using the expressions for the velocity field (48) 
and (51 )  along with v = €dl) and u = s2u(1), we find that the inertial terms are small if 

Recalling that B(,u'/,u) U, is the magnitude of the fluid velocity within the film, we see 
that (56) requires the Reynolds number for the fluid film based on the film thickness h, 
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to be small. Using the Reynolds number for the outer flow Re = (p’U, R,/,u’) it is useful 
to  rewrite condition (56) as 

( B $ ) ~ ;  Re < 1. (57) 

Since E,u’/,u and Re have already been assumed small, this last expression clearly 
indicates the additional restrictions imposed on the properties of the two fluids by (56) .  

After using (55) the equation (41) determining the film profile f (0) becomes 

Since the film thickness vanishes at the contact lines, we shall require 

f .+ 0 as 8-t  B,, 0,. (59) 

Although for finite contact angles @ the neighbourhood of the contact line is a region 
of non-uniformity, it is a general rule of the method of matched asymptotic expansions 
that the outer solution (in our case, the solution for f (0) obtainedfrom (58)) shouldbe 
required to satisfy a boundary condition for the inner solution whenever possible (the 
inner solution referring to the solution valid in the neighbourhood of the contact line). 
Imposing an inner boundary condition on the outer solution then minimizes the 
modifications of the flow field needed by the inner solution, with the outer solution 
being determined to first order without considering the details of the inner solution. 
In  a similar situation, Buckmaster (1977) made use of this fundamental asymptotic 
principle while studying the motion of viscous sheets down inclined surfaces. 

An additional comment concerning the nature of the thin film approximation is 
appropriate a t  this point. The essence of the phenomena is that, due to the thinness 
of the fluid layer, large pressures are generated within the film by the outer flow; the 
pressure being inversely proportional to the film thickness. Therefore, as we can see 
from (54), as we approach the contact line (f -+ 0) the pressure generated within the 
film becomes very large. Consequently, we can infer from this that near the contact 
line the fluid-fluid interface may not be nearly spherical in shape and therefore 
can satisfy the contact-angle condition for finite values of 0, even though the 
viscous forces are small compared to the surface tension forces. The point is that 
a relatively weak outer flow generates very large pressures within the film near the 
contact line which result in leading order deviations in the fluid-film profile near the 
contact line. 

I n  order to make condition (59) complete, it is necessary to determine the position of 
the contact lines 6, and 8, (or for a single contact line either 6, or 0,). This can be done 
by constructing the soIution that is valid near the contact line, i.e. the solution 
which satisfies the contact angle condition safla8 = t a n 0  at 0 = 0, and 8, and 
matches to the outer solution. However, since the details of the flow in this inner 
region are of little interest, we can more easily obtain the positions 0, and 0, by con- 
sidering global force equilibrium for the fluid film. The details are contained in the 
appendix. The principal result is that the position of one of the contact lines, either 
8, or 01, is determined as a function of the solid-fluid contact angle @ and the position 
of the other contJact line. However, the position of one of the contact lines is not 
uniquely determined and consequently there exist many possible steady fluid-film 
configurations. In  the case ofa  single contact line the problem is uniquely determined 
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since specifying the absence of one of the contact lines is essentially the same as speci- 
fying its position. In  an actual problem the occurrence of a particular fluid-film con- 
figuration is likely to be deduced from considerations of an appropriate initial-value 
problem describing the fluid-film development. This view was strongly supported by 
the experimez s conducted. 

Up to this point the problem has involved the thinness parameter e, but has not 
directly involved the characteristic film thickness h,. The remaining condition, which 
clearly determines h,, is the specification of the volume of fluid within the fluid film. 
To leading order this becomes 

el 
volume = 2 7 r h , R ~ ~ 0 0 f ( 8 )  sin 8d8. (60) 

In summary, we have obtained the fluid-film solution 0, u(l) and p(l) as a function 
of the fluid-film thickness f ( O ) ,  which is determined from equation (58) with boundary 
conditions (59). The solution of equation (58) will be discussed in $4 along with a 
number of examples. 

3.3. The second-order outer flow solution 

The solution of the second order, outer Stokes flow problem with boundary conditions 
(43), (44) and (45) is most easily constructed using the Green’s function method (Oseen 
1927). In  general, for unbounded flow about a surface S the Cartesian components of 
the velocity field uj = (Ul, U., U,) a t  a field point x, which vanish a t  infinity, are given, 
in terms of dimensional quantities, by 

where within the integral U, (k = 1 , 2 , 3 )  are the components of the velocity field 
specified on S, nk are the components of the unit outward normal to S, a/an is the 
derivative in the direction normal to S ,  and the Green’s function rjk(X,%) and q.(x,g) 
are described as follows: Fjk(x, E,) are the k components of the velocity field at  E, which 
satisfy rjk = 0 for E, on S, due to a point force located a t  E, = x and oriented in the 
j-direction with strength 8np’; G(x,E,) is the corresponding pressure field a t  E, due to 
the point force in the j-direction. 

In  our case the surface S in (61) is a sphere of radius R = 1.  For that portion of the 
sphere covered by the film the velocity on S is given by (44). After utilizing the leading- 
order solution (46)) (48), (53) and (50) (44) becomes 

I U(1) = 0 

Since the velocity satisfies the no-slip condition (43) on that part of the sphere not 
covered by the film, the complete boundary condition on R = 1 becomes 

V(l’(6) e, = # f ( 6 )  sin 6 (1 - $p’/p) e, for 8, < 6 < 01, 
0 for 0 < 8 < 8, and 8, < 8 G n. 

(63) U(1) = { 
Furthermore, since n = e, we have W). n = 0 on S and (61) becomes 
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Although the Green’s function r j k  has been given by Oseen (1927, p. 108), there is 
little practical value in computing the details of the velocity field from (64): especially 
since the Green’s function involves considerable algebraic complexity. The quantity 
associated with the second-order outer flow which is of practical interest is the force 
exerted on the fluid or equivalently the force on the particle. This is most easily 
determined from the asymptotic form of the velocity field U(l) (x)  as x --f 00. I n  this 
limit, the leading-order term to emerge will necessarily be the fundamental singularity, 
i.e. the stokeslet. From the singularity method we then have the well-known result 
that the force on the fluid is given by 8np’ times the stokeslet strength. 

The asymptotic form of the Green’s function r j k ( X ,  g) as x --f 00 is readily constructed 
directly or deduced from Oseen’s result as 

where r = Ix-sI and R = 151. The first term in (65) is clearly the unit point force a t  
E, = x and the remaining terms are the leading-order terms of the image system within 
the sphere as x -+ 00. In particular, the image system in (65) corresponds to a stokeslet 
and potential doublet located a t  the sphere centre. Substituting (65) and (63) into (64) 
we find, as x --f 00, 

where 

Equation (66) is clearly the velocity field associated with a stokeslet of strength a(l) 
oriented in the negative x direction. The contribution to the force on the fluid due to 
the second-order outer flow is therefore given in dimensional terms by 

- 8np’UoRoea(1)e,. 

3.4. The drag force on the fluid-coated sphere 

The total force exerted on the outer fluid by the motion of the fluid-coated sphere is 
equal to 8np’ times the total stokeslet strength, i.e. the sum of the stokeslet strengths 
from the first- and second-order outer flow problem. Consequently, the drag on thefluid- 
coated particle is given in dimensional terms by 

where 

D = J::f(e, sin30d0. (69) 

The first term in (68) is simply Stokes’s law for the resistance of a solid sphere of 
radius R,,. We therefore see that drag reduction occurs when the sphere has a fluid film 
with a viscosity ratio ;u/p’ < t. Furthermore, note that the two order-€ terms in (68) 
have the following physical interpretation : the first term corresponds to an increase 
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in drag due to the increase in particle size associated with the presence of the fluid film, 
and the second term is the drag-reducing effect due to the fluid circulation within the 
film, i.e. the lubrication effect. 

4. Results and discussion 
In  this section we will examine the following two fluid-film configurations, both of 

which were observed in a simple experiment: (1) a fluid film which has a single contact 
line at 6 = 8, and covers the rear portion of the sphere and (2) a fluid film which has two 
contact lines and forms a belt around the sphere. The results for a film covering the 
front of the sphere with one contact line a t  8 = 6, are similar to ( 1 )  above and conse- 
quently will not be considered in detail. However, an additional characteristic typical 
of these configurations will be discussed. In  each case the complete solution is given by 
the results obtained in 5 3, along with the film profile f (8) which will be determined 
numerically from equation (58) with boundary conditions (59), i.e. 

a2f af P sin& 
€2P* + q0* f(B') do', -+cot8-+2f = -- 

a02 ae 
f + O  as 8+8,,8,, (71 )  

where k = $(,u'/p)/3/.@ and the position of the contact lines is known (as discussed 
earlier, this is equivalent to specifying the contact angle and one of the contact lines). 

For convenience the characteristic film thickness h, is taken to be the maximum 
film thickness and we use that point as our reference location 8 = 8* (see (55)). With 
this choice we must have 

f = 1  and a f = O  a0 a t  8=8* .  (72) 

In  the case of two contact lines the position O* is not known a priori but is determined 
along with ( P / $ ) p *  for a specified value of k and specified contact line positions 8, and 
8, (one of which is given in terms of the other, for prescribed a, by the condition of 
global force equilibrium). I n  the case of a single contact line with the rear portion of 
the sphere covered by the film the maximum film thickness is found to be located a t  
8" = 0 for all values of 8,. This is because the sum of the principal curvatures K is a 
decreasing function of 8 for 0 < 8 ,< n (i.e. from (17 )  and (31) 

&/a8 = (,8/c) dp(l)/a8 = -:(,u'/,u) sin O / f ( O ) ) .  

In  terms of the numerical computations the film profile was constructed using an 
inverse procedure, namely, a value of 19" was chosen and used as the initial point for 
a shooting-method scheme with initial conditions (72). For a specified value of k, 
various values of the parameter (/3/e2)p* were chosen (with 6* fixed) until the con- 
dition f = 0 was satisfied at a prescribed location 13 = 8,. Then, in the case of two 
contact lines, the remaining portion of the profile for 8 < 8" was computed and the 
value of B0, corresponding to the prescribed values of 8" and (P/e2)p*,  was determined. 
From a numerical standpoint it is actually more convenient to consider the equation 
obtained from (70) after differentiation with respect to 8, i.e. 

( 7 3 )  
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I I 1 l l l I l 1  I l 1 1 1 l 1 1 1  I I 1 1 1 1 1 1 1  I I I I I I  

where the additional initial condition required a t  0 = O* for the shooting method is 
readily obtained from (70)  and involves the parameter (p / e2 )p* .  The shooting method 
used to solve (73)  employed a fourth-order Runge-Kutta scheme. For the discussion 
to follow, note that the parameter k is a measure of the driving force on the film since 
it involves the ratio (,u'/,u), and that the parameter (/3/e2)p* is a measure of the 
pressure in the film at 8 = 8". 

In the first example we consider a fluid film which has one contact line at  8 = 0, and 
has its maximum depth a t  0" = 0. Due to the singular nature of the coefficients in (73)  
a t  8 = 0 the analytic solution valid near 8 = 0 was constructed and used in con- 
junction with the numerical calculation. In  particular, near e = 0, f (8)  is easily found 
to be 

where 

A = 1 2 (1 + i $ , p * ) .  

The actual initial point for the numerical computation was taken to be 8 = A0 << 1 
with conditions on f, af/ae and aZf/aO2 at  8 = A6 determined from (74) .  

In  this case you find that, for specified values of k, the condition f (8,) = 0 can only 
be satisfied for sufficiently large values of the pressure p * .  Furthermore, the position 
of the contact line 0, increases asp* decreases and there exists a maximum value of 8, 
corresponding to a minimum value of p * .  For p* less than the minimum value you find 
profiles f (0)  which decrease to some minimum value greater than zero and then 
diverge from the sphere, never satisfying f = 0. This behaviour is consistent with the 
fact that the sum of the principal curvatures K decreases as 0 increases, as already 
noted. 
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FIGURE 3. The drag-force factor D as a function of the driving force parameter k 
for a film with a single contact line a t  8 = Olmar and 8* = 0. 
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Numerical calculations were completed for values of the driving-force parameter k 
between 0.01 and 100.0. Figure 2 is a plot of the maximum possible extent of the 
fluid film, i.0. elmax, versus the parameter k. Note that small values of k correspond to 
a weak driving force, and therefore as expected Blmaxincreases as k decreases. Further- 
more, in figure 3 we see that, as the maximum extent of the film increases, the drag 
force factor D (equation 69) also increases. I n  figure 4 we have plotted (pfe2)p* versus 
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FIGURE 5. The drag force factor D as a function of 8, for a film with a single contact line at 8 = O1 
and 8* = 0. Five values of the driving-force parameter k are shown, and the largest value of 8, 
for each k is elmax. 

8, for k = 0.01, 0.1, 0.4, 1.0 and 4.0. As already discussed, we observed that (p/e2)p* 
decreases as 8, increases until the maximum value of 8, is reached, i.e. the largest value 
of 8, plotted in figure 4 for each k. In  a specific problem, once the contact angle Q, is 
specified, the extent of the fluid-film 8, is determined by the condition of global force 
equilibrium discussed in the appendix. Therefore, for a specified value of the driving- 
force parameter k and contact angle @, the value of p* is determined as part of the 
solution from figure 4; provided, of course, that the value of O1 for the given contact 
angle is a possible solution for the specified value of k, i.e. 8, < O,,,,. In  figure 5 the 
drag force factor D is plotted versus 8, for the same values of k shown in figure 4. We 
see that D increases as 8, increases, and in each case the maximum value of D corre- 
sponds to the maximum value of 8,. Note that the drag force factor D is small for films 
with 8, < 47~. This is because the effect of the film on the drag force is only significant 
when the film is present near 8 = in, where the shear stress exerted on the film by the 
outer fluid is a maximum. Consequently, for values of k > 1-0, for which elmax < +IT, 
the deviation in the drag force from that of a solid sphere alone is small. 

From the velocity field v = dl) and u = e2u(l), where dl) and u(l) are given by (48) 
and (51), the stream function for the fluid film is easily computed as 

The streamlines for a typical case are sketched in figure 6. 
A simple experiment was conducted in order to qualitatively observe the fluid-film 
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FIGURE 6. Streamlines for a typical fluid film having a single contact line 
and B* = 0. k = 0.01 and (p /e2)p*  = -0.5. 

configurations. A plastic sphere (diameter = 6.35mm) was sedimented in a tank 
containing a mixture of water and Pluracol V-10 (a liquid polyoxyalkylene) having a 
viscosity of approximately 1850 CP and a specific gravity of 1.07. At the shear rates of 
interest here, viscosity measurements using a Brookfield viscometer indicated that the 
Pluracol-water solution exhibited Newtonian rheological properties. The film fluid was 
a motor oil having a viscosity of 115 CP and a specific gravity of 0.90. The film viscosity 
was increased by mixing the motor oil with a small amount of a light-petroleum-based 
grease. The oil-grease mixtures, however, were prepared in such small quantities that 
viscosity measurements were not possible. The oil was slightly buoyant, but the ratio 
of buoyant forces to viscous forces in the experiment was very small. I n  the experi- 
ments conducted the Reynolds number, Re = p'U,R,/,u', was within the range 1.6 
x 10-3 to 1.8 x 10-3. The spheres were either fully or partially coated with motor oil 
and photographs of the sedimenting spheres were taken after all observable time- 
dependent development of the film had ceased. I n  figure 7, photographs of three differ- 
ent fluid films having a single contact line a t  8 = 8, are shown. The experiment 
supported the fact that increasing the film viscosity, i.e. decreasing k,  enables the film 
to cover greater portions of the sphere. Figure 7 (a) shows the maximum extent of the 
film whichcould be obtained with motor oil alone. Increasing the viscosityof theoil film 
made it possible toincrease the extent of the fluid film as shown in the figure 7 ( b )  and (c). 

The second example to be considered is that of a fluid film forming a belt around the 
sphere. The behaviour of this film configuration will be illustrated by considering the 
details of a typical case. Here we will consider the case when 8, = 135", approximating 
the position of the forward contact line shown in the photograph of figure 7 (d). I n  the 
experiment a belt of an oil-grease mixture was initially coated on the sphere by rolling 
the sphere through a thin layer of the film fluid. After the fluid film reached its steady- 
state configuration during sedimentation photographs were taken. Figure 7 (d )  was 
typical of the fluid films which could be generated in this fashion. 

As already described, the numerical results in this case were obtained by deter- 
mining the value of (/3/tz2)p* which satisfied f = 0 a t  8, = 135" for prescribed values of 
the maximum depth 8" and the driving-force parameter k .  After (P/tz2)p* was deter- 
mined the remainder of the film profile for 8 < 6" was computed, and the position of 
the rear contact line 8, was found. In  figure 8 we have a plot of 8" versus 8, for four 
values of k .  For k = 1.0, 4.0, and 10.0, the smallest value of 8, shown in each case 
corresponds to the smallest possible value of 8, capable of satisfyingf = 0 a t  8 = 8,. 
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( C )  (4 
FIGURE 7. Photographs of three fluid films (a, b ,  c )  which have a single contact line; the film 
covers the rear of the sphere and is absent over a portion of the front of the sphere, and a fluid 
film (d )  with two contact lines, forming a belt around the sphere. The spheres are sedimenting 
towards the bottom of each photograph, 

This physicalIy means that for a specified magnitude of the driving force there is some 
maximum extent of the fluid film, i.e. a maximum value of - 8,. This is analogous to 
the maximum value of 8, found in the previous example. For k = 0.1, as 8, + 0, 8" is 
tending to zero, i.e. the present film configuration is tending to that of the one contact 
line case. This is consistent with results of the previous example. In the previous 
example when k = 0.1, 8,,,, was slightly greater than 135' and therefore 8, = 135' 
with 0, = 8" = 0 is an admissible solution. In figure 9 w0 have the drag-force factor D 
plott.ed against 8, for the same four values of k. Note that for k = 0.1 and 1.0 the maxi- 
mum value of D does not correspond to the maximum film extent (i.e. minimum 8,). 
In  this case, both the extent of the fluid film and the location of the maximum film 
thickness have an effect on the value of D. As the extent of the film increases, the 
location of the maximum film thickness moves toward the rear (figure 8,8* decreases 
as 8, decreases), and the film becomes thinner near 8 = in-. As the film becomes thinner 
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FIGURE 8. The location of the maximum film thickness 8* as a function of the position of the 
rear contact line 8, for a film with two contact lines, 6' = 8, and 8 = 8, = 135". Four values of 
the driving-force parameter k are shown. 
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FIGURE 9. The drag-force factor D as a function of the position of the rear contact line 8, for 
a film with two contact lines, 8 = 8, and 6' = 8, = 135". Four values of the driving-force 
parameter k are shown. 

a t  8 = *IT it  becomes less effective in altering the drag force. Consequently, there is a 
value of O0 where the drag factor D is optimum. It is interesting to  note that in both 
cases, Ic = 0.1 and 1-0, the maximum value of D occurs when the maximum depth is a t  
approximately the same position, namely, 8* 2: 76". The reason for this is not entirely 
clear. The streamlines for a typical situation are shown in figure 10. 

The last comment concerns the fluid-film configurations which may occur when the 
film covers the forward portion of the sphere and has a single contact line a t  8 = Oo. 
Although this case has much in common with the fluid films considered in the first 
example, there is one additional film profile which is unique to this situation. Since 
aK/86 = - $(p'/p) sin e/ f (e) ,  the sum of the principal curvatures increases as you move 
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FIGURE 10. Streamlines for a typical fluid film which has two contact lines. 
k = 1.0 and ( p / c 2 ) p *  = 1.5. 
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FIGURE 11. Streamlines for a typical fluid film which has a single contact line at 6' = 0, and 
covers the front of the sphere with a local minimum thickness at 0 = 7r. k = 10.0 and 
( b / ~ ' )  p* = - 5.0. 

toward the rear of the sphere from 8 = n to 8 = 27r. Consequently, here it is possible to 
have a film profile which has a local minimum a t  r3 = n, increases to a maximum a t  
8 = 8* > 7r, and then decreases to f = 0 at  the rear contact line 8 = 8,. Such profiles 
were found for k = 1.0 and 10.0, but were not obtained for smaller values of k, such as 
k = 0.1. The streamline pattern for a typical case is shown in figure 1 1. The other film 
profiles found in this case, which were very similar to  those of the first example, started 
at  a maximum value at 0 = n and decreased monotonically to f = 0 a t  8 = 8,. I n  
general, the role of the driving-force parameter k and the pressure parameter (/3/ez)p* 
were the same as before, and therefore further discussion will be omitted. I n  the 
experiments conducted it was unfortunately not possible to sediment the particle with 
a film covering the front of the sphere. The difficulty arose from the small buoyant 
force on the oil film a t  the front of the sphere which made such orientations unstable. 
Any small perturbation from a perfectly symmetric orientation of the particle resulted 
in rotation of the particle due to the torque generated by the buoyant force on the 
forward portion of the film. 
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FIGURE 12. The film geometry near the contact line C,  located at 8 = 8,. 
The geometry is similar near the contact line C, a t  0 = 8,. 

I wish to thank Ren6 Lara for making the excellent reproductions of the original 
photographs. This work was partially sponsored by the National Science Foundation. 

Appendix 

sional quantities, 
Since the sum of the forces acting on the fluid film must vanish we have, in dimen- 

s, f ' d S +  S s , f d S + ~ ~ ~ ~ v , d ~ + ~ ~ ~ a v , d s  = 0, (A 1) 

where f' is the force per unit area at  the fluid-fluid interface (S,) due to the outer fluid, 
f is the force per unit area in the fluid film at  the sphere surface (S,) which is in contact 
with the film, and vk (k = 0 , l )  is a unit vector tangent to the surface S, and per- 
pendicular to the contact line Ck (see figure 12). Clearly, for a single contact line only 
one line integral would be present in (A 1). 

Due to the symmetry of the flow under consideration only the sum of the force in 
the x-direction is non-trivial. Since the surface tension has been assumed constant, the 
line integrals are readily computed, giving, for the force balance in the x-direction, 

n n 

f LdS + f,dS = 2nR0a[sin 0, sin (O1 + 0) -sin 0, sin (8, - @)I, (A 2) J ,  Jsb 
where f j: and f, are the x-components of the tractions f' and f, and the contact angle 0 
is the angle between a tangent to S, and a tangent to 8, measured from the fluid-film 
side of the contact line. 

The leading-order terms on the left-hand side of (A 2) are due to the large fluid-film 
pressure. In particular, after neglecting terms of O(,u'Uo/Ro) and O(,uU,/R,) in fj. and 
f, we have 

E 2nR,a[sin 8, sin (8, + 0) - sin 8, sin(0, - @)I, (A 3) 
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where @)(8) is given by (55) .  Note that in obtaining (A 3) it is necessary to consider 
the behaviour of the solution valid near the contact line where the depth of the fluid 
film vanishes, since a singularity in the pressure and normal stress is expected. Very 
close to the contact line the flow field can be approximated by the flow near a sharp 
corner between two planes intersecting at  an angle @ (the contact angle). On one 
plane (the solid surface) the no-slip condition must be satisfied. On the other plane 
(the fluid-fluid interface) the normal component of velocity must vanish and the shear 
stress is prescribed. Since the details of this analysis are similar to considerations of 
Moffatt (1964) they will not be repeated. The primary result needed here is that the 
pressure and normal stress are logarithmically singular in the small inner region close 
to the contact line. Consequently, after integration their contribution to the total force 
on the fluid film is small compared to those terms retained in (A 3). 

After partially integrating the left-hand side of (A 3), recalling /3 = ,uU,/a, and 
performing some simple manipulations, we obtain 

where 
2sin~@sin(8,+0,)cos(8,-8,+4~)-(/3/s)1 = 0, (A 4) 

Equation (A 4) determines 8, for specified values of 8, and @ or, alternatively, deter- 
mines 8, for specified 8, and @. Since (A 4) determines the contact line up to a term of 
O(s) we let 8, = 81') + e8f) + . . . (or alternatively we could let 8, = O,$O) + sO,$l) + . . . ) 
and find 

2 sin +@{sin (8jo) -t 8,) cos (8jo) - 8, + $0) + s8j1)[cos (81,) + 0,) cos (8j0) - 8, + 
- sin (8jo) + 8,) sin (8io) - 8, + 4@)]) - (P /E )  I + O($) = 0. (A 5) 

For finite contact angles @ we have from (A 5 )  the following hierarchy of equations 
for @lo) and Oil),  

sin (8jo) + 8,) cos (81,) - 8, + 40) = 0, (A 6) 

284') sin $CD[cos (81') + 8,) cos (8jo) - 8, + 40) -sin (OF + 8,) sin (8jO) - 8, + &@)I 

- (/3/€2) I = 0. 

(A 7) 
The equations (A 6) and (A 7) have the two solutions 

and 

I 840) = 7r - 8,, 

81,) = (/3/2$) I[sin (t0) cos (28, - &@)]-l. 

If we set 8, = 0 in the first solution (A 8) we obtain the special case of one contact line 
with the film absent from a portion of the front of the sphere. Similarly the single 
contact line with the film absent from the rear portion of the sphere is obtained using 
the alternative description 8, = Oho) + sO,$l) in (A 4) and setting 8, 2= n. In either case, 
since 0 < 0 < n, the maximum extent of a fluid film with one contact line and finite 
contact angle @ is less than half of the sphere surface. Note that the second solution 
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given by (A9) describes the positions of two contact lines which, to first order, are 
located symmetrically about 8 = +nand are independent of @. In this case the position 
of the contact lines are independent of @ to first order because the leading-order contri- 
bution to the net force on the film is zero by symmetry. 

For infinitesimal contact angles @ the positions of the contact lines can also be 
determined from (A 5). However, in this case the solution for the film thickness f ( 8 )  
obtained from (58) is uniformly valid, since the small slope condition is satisfied 
everywhere. Consequently the fluid-film configuration f (0) must satisfy the condition 
eaf/a8 = tan @ at 8 = 8, and 8, for specified small contact angles 0. For calculation 
purposes this latter approach is more conveniently employed than the solution of 
(A 5). As will be illustrated in the examples, for small contact angles you find that it is 
possible to have a fluid film covering more than half of the sphere. We make this point 
since surfaces are rarely perfectly smooth and the observed contact angle (corre- 
sponding to used here) could be small even though the actual contact angle is finite 
(Dussan V. 1979). In such cases it would also be possible to have two different observed 
contact angles @, and Q1, associated with the contact lines 8, and el, further increasing 
the number of fluid-film configurations possible. 
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